
SRE Implementation
for a Global E-commerce Platform

This case study highlights the implementation of Site Reliability Engineering (SRE)

for a global e-commerce platform. By adopting a hybrid SRE model, the team

focused on proactive monitoring, data-driven scaling, and automation to handle

traffic spikes, optimize costs, and ensure high system reliability. The model allowed

the platform to scale efficiently, especially during peak sales events. This approach

resulted in significant annual savings, improved performance, and minimized

downtime, all while fostering a culture of shared responsibility for system reliability.

Overview

Managing Traffic Spikes Without Overspending

Sales Events and Traffic Surges: Large-scale sales events like Black Friday and

Cyber Monday caused huge traffic spikes.

Costly Infrastructure Scaling: Keeping the platform continuously scaled up to

handle traffic surges 24/7 was cost-prohibitive.

Ensuring Fast Performance

Customer Experience: Even a slight delay of half a second resulted in customers

abandoning their carts.

Slow Websites: Slow load times not only impacted sales but also customer trust.

Avoiding Downtime

Impact of Downtime: Even brief downtime led to significant revenue loss and

poor customer satisfaction.

Business Challenges

Our client is one of Asia’s largest clothing retailers with more than 2,500 stores

across the globe. The company operates in segments such as manufacturing and

sale of apparel in the domestic and overseas markets.

Client Profile

Uptime Goal: Achieving a 99.999% uptime while balancing cost efficiency was a

significant challenge.

Team Collaboration and Ownership

Developer Focus: Developers were primarily focused on feature delivery, leaving

system reliability to be reactive rather than proactive.

IT Team Limitations: Traditional IT teams focused on fixing issues post-failure,

creating silos and gaps in system reliability.

Business Requirement

Scalable, cost-effective infrastructure to manage traffic spikes and seasonal events

A proactive SRE strategy with continuous monitoring, optimization, and

collaborative ownership of system reliability between developers and operations

High performance and 99% uptime to prevent revenue loss and

customer dissatisfaction

After evaluating several Site Reliability Engineering models, we selected a

hybrid approach:

Dedicated SRE Team: Could focus on reliability but might face scaling issues.

Consulting SRE: Would guide but needed strong collaboration with developers.

Hybrid Team (Chosen Model): A central SRE team alongside developer

representatives in each microservice team. This hybrid approach integrated

developers and SREs, sharing ownership of both feature development and

system reliability.

Choosing the Right SRE Model

To ensure a seamless user experience, SLIs, SLOs, and SLAs work together to maintain

service quality:

Understanding SLIs, SLOs, and SLAs for Reliable Service Performance

By aligning SLIs, SLOs, and SLAs, businesses can optimize performance, enhance

reliability, and build customer trust.

1. SLIs (Service Level Indicators) that measure system performance include:

Availability: 99.95% uptime

Latency: Pages load within 2-3 seconds for 95% of requests

Error Rate: Less than 0.1% failure rate

Throughput: Orders processed per second

Checkout Success: Success rate above 99.5%

2. SLOs (Service Level Objectives) define performance goals to exceed SLAs:

Availability: 99.98% uptime with a buffer above SLA commitment

Latency: 95% of product pages load within 2 seconds

API Response Time: 95% of calls within 200ms

Incident Response: Critical issues addressed within 10 minutes

3. SLAs (Service Level Agreements) outline customer commitments:

Availability: 99.95% uptime commitment

Critical Issue Resolution: Within 60 minutes during business hours

Checkout Failures: Less than 0.5% failed transactions

1. Observability: Building the Foundation of Reliability

We implemented a robust monitoring framework, leveraging Grafana to

track KPIs such as:

Incoming Request Count – Understanding traffic patterns

SRE Solution

Frequent log scans were conducted to identify critical anomalies, proactively

addressing potential failures.

RDS Utilization – Optimizing database performance

Container CPU and Memory Usage – Monitoring resource consumption

Running Task Count – Managing workloads efficiently

Error Rates – Early detection and resolution of issues

2. Data-Driven Scaling and Cost Efficiency

Through continuous monitoring, we analyzed traffic patterns on a daily, weekly, and

monthly basis, which enabled us to:

Scale down during low-activity hours to reduce costs

Scale up before peak hours for seamless performance

Identify peak traffic periods in advance

Set up automated alerts for traffic exceeding predefined thresholds

This data-driven approach helped us develop a predictive scaling strategy, optimizing

costs without compromising performance.

US

CA

IN

VN

ID

SG

TH

MY

AU

PH

UTC 24
.0
0

23
:0
0

22
:0
0

21
:0
0

20
:1
5

20
:0
0

19
:3
0

19
:0
0

18
:3
0

18
:0
0

17
:3
0

17
:0
0

16
:3
0

16
:0
0

15
:3
0

15
:0
0

14
:3
0

14
:0
0

13
:3
0

13
:1
5

13
:0
0

12
:3
0

12
:0
0

11
:3
0

11
:1
5

11
:0
0

10
:4
5

10
:0
0

09
:0
0

08
:0
0

07
:0
0

06
:0
0

05
:0
0

04
:0
0

03
:0
0

02
:0
0

01
:0
0

00
:0
0

150k+ 200k+ 250k+ 1 Mil+500k+400k+350k+300k+

Traffic pattern in a day

11/04
09:00

175 K

150 K

125 K

100 K

75 K

50 K

25 K

0

11/04
21:00

11/05
09:00

11/05
21:00

11/06
09:00

11/06
21:00

11/07
09:00

11/07
21:00

11/08
09:00

11/08
21:00

11/09
09:00

11/09
21:00

11/10
09:00

11/10
21:00

11/11
09:00

11/11
21:00

11/12
09:00

11/12
21:00

11/13
09:00

11/13
21:00

11/14
09:00

11/14
21:00

11/15
09:00

11/15
21:00

11/16
09:00

11/16
21:00

11/17
09:00

11/17
21:00

Traffic pattern for 14 days

3. Automation: Reducing Manual Effort and Human Errors

We automated infrastructure scaling with Jenkins jobs, enabling scale-ups and

scale-downs based on real-time traffic. This resulted in faster responses to traffic

fluctuations, reduced overhead, and fewer human errors. We maintain a high

maximum container limit, only scaling down the minimum, ensuring quick scaling of

the Auto Scaling Group (ASG) during emergencies.

4. Incident Response: Building a Resilient and Prepared Team

A well-prepared team is crucial for minimizing downtime and mitigating failures.

Our incident response strategy focused on proactive planning, structured

workflows, and ongoing training for swift, effective incident handling.

Through continuous testing and refinement, we improved response times, reduced

downtime, and built a confident, prepared team.

Clear Incident Management Framework: We defined a structured flow, ensuring

team members knew how to handle system failures, whom to notify, escalation

steps, and debugging common failure patterns. We also created detailed

manuals with resolution guides, reporting templates, and stakeholder

notification protocols.

Strengthening Preparedness with Mock Drills: Regular mock drills simulated

real-world scenarios, reinforcing protocols, identifying gaps, and improving

coordination between SRE, DevOps, and support teams.

5. Root Cause Analysis (RCA): A Learning-Driven Approach

Effective incident management involves staying calm, ensuring recovery within SLA,

and conducting thorough RCA.

No-blame, learning-focused RCA approach that emphasizes learning, not

blaming. The goal is to understand what went wrong and prevent recurrence.

We use the Five Whys method (dig deeper by asking ‘why’ multiple times) to identify

the true root cause and ensure corrective actions to target the real problem.

Structured RCA documentation to capture incident details, root causes, corrective

actions, and lessons learned to improve future processes.

6. Performance Improvements: A Culture of Continuous Optimization

At the core of our SRE approach is a focus on performance optimization, ensuring

fast and seamless user experiences.

SREs continuously monitor system metrics, identifying and implementing optimizations

for enhanced performance.

Proactive Performance Testing: We conduct regular performance testing with

Gatling scripts to identify bottlenecks, assess system response under load, and

establish benchmarks for ongoing improvements.

Query Optimization for Faster Execution: By analyzing slow query logs, we

optimized high-latency database queries, improved execution times, refined

indexing, and streamlined application logic for better efficiency.

Technologies

Cost Savings

Automated scaling reduced costs by $10K-$13K per region, saving over $1.5

million annually across 10 regions.

During the Black Friday sale, our approach saved $45K-$50K compared to the

previous year.

Proactive Monitoring and Optimization

Proactive monitoring ensures system stability and cost-effectiveness.

Data-driven scaling maximizes resource utilization, while automation reduces

manual effort and boosts efficiency.

Incident Management and Root Cause Analysis

A clear Incident Management flow enables quick, organized responses.

RCA focuses on learning and improvement, preventing recurring issues and

enhancing system resilience.

Performance-First Culture

A performance-driven approach ensures consistent system efficiency and

responsiveness through regular testing, early bottleneck detection, and query/

logic optimizations.

A data-driven strategy enables continuous, measurable performance

improvements.

Business Benefits

www.qburst.com info@qburst.com

